MACHINE LEARNING

Anno accademico 2018/2019 - 1° anno - Curriculum Data Science
Docente: Giovanni Maria FARINELLA
Crediti: 6
SSD: INF/01 - Informatica
Organizzazione didattica: 150 ore d'impegno totale, 102 di studio individuale, 24 di lezione frontale, 24 di esercitazione
Semestre:

Obiettivi formativi

  1. Conoscenza e capacità di comprensione (knowledge and understanding): lo studente acquisirà le conoscenze e i concetti alla base dei sistemi di apprendimento automatico ed in particolare le metodologie base che permettono di creare sistemi di classificazione/regressione a partire da dati eterogenei
  2. Capacità di applicare conoscenza e comprensione (applying knowledge and understanding): lo studente acquisirà le competenze pratiche di realizzazione di sistemi di apprendimento automatico attraverso attività laboratoriale
  3. Autonomia di giudizio (making judgements): Attraverso gli homework e le correzioni in classe degli stessi lo studente sarà in grado di elaborare autonomamente soluzioni in grado di risolvere i problemi di base che potrebbero presentarsi nel mondo del lavoro
  4. Abilità comunicative (communication skills): lo studente acquisirà le necessarie abilità comunicative e di appropriatezza espressiva nell'impiego del linguaggio tecnico nell'ambito generale dei sistemi di apprendimento automatico.
  5. Capacità di apprendimento (learning skills): Lo scopo del corso è quello di fornire un'approfondita introduzione delle principali teorie e tecniche algoritmiche del Learning Machine. A tal proposito, saranno presentati modelli fondamentali per la classificazione e la regressione, e le architetture basate su reti neurali (es. Deep Learning). Saranno discusse le metodologie per realizzare e ottimizzare gli algoritmi di apprendimento automatico, e quelle utili alla valutazione delle performance dei sistemi di Machine Learning. Si utilizzeranno librerie software open source in linguaggio Python per mettere in pratica le nozioni teoriche presentate nel corso. In particolare, il corso si propone di formare studenti che:
    1. comprendano concetti chiave alla base delle techiche di Machine Learning
    2. conoscano una ampia gamma di algoritmi di apprendimento per risolvere problemi classici del Machine Learning (classificazione e regressione)
    3. comprendano come effettuare il design e il tuning degli algoritmi al fine di applicare gli stessi a nuovi set di dati
    4. siano in grado di eseguire la valutazione degli algoritmi di Machine Learning in modo da poter selezionare il modello migliore
    5. conoscano le librerie python utili allo sviluppo di algoritmi di Machine Learning

Modalità di svolgimento dell'insegnamento

Lezioni frontali e laboratorio


Prerequisiti richiesti

Non si richiedono prerequisiti specifici. Si utilizzeranno nozioni di base delle seguenti materie:

Elementi di Analisi Matematica

Matematica Discreta

Fondamenti di Informatica

Programmazione

Interazione e Multimedia

Algoritmi


Frequenza lezioni

Consigliata


Contenuti del corso

  • Probability Theory and Distributions
  • Linear Models for Regression
  • Linear Models for Classification
  • Neural Networks
  • Deep Learning
  • Python programming and Libraries for Machine Learning

Testi di riferimento

  1. R. O. Duda, P. E. Hart, D. G. Stork, "Pattern Classification", Wiley, 2000
  2. C. Bishop, “Pattern Recognition and Machine Learning", Springer, 2006
  3. E. Alpaydin, “Introduction to Machine Learning”, MIT Press, 2014
  4. I. Goodfellow, Y. Bengio and A. Courville, "Deep Learning", MIT Press, 2016


Programmazione del corso

 ArgomentiRiferimenti testi
1Probability Theory and Distributions1, 2 
2Linear Models for Regression2, 3, 4 
3Linear Models for Classification2, 3, 4 
4Neural Networks1, 2, 3, 4 
5Deep Learning
6Hidden Markov Models1, 2, 3 
7Python programming and Libraries for Machine LearningRisorse in Rete 

Verifica dell'apprendimento

Modalità di verifica dell'apprendimento

Prova orale

Prova di Laboratorio

Progetto


Esempi di domande e/o esercizi frequenti

- Si discuta l'algoritmo di Backpropagation utilizzato per addrestrare le Reti Neurali

- Si definisca il problema dell'overfitting e si discuta la regolarizzazione